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Organized motions in a fully developed turbulent 
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By JIN TSOt A N D  FAZLE H U S S A I N  
Department of Mechanical Engineering, University of Houston, TX 77004, USA 

(Received 12 August 1987 and in revised form 5 December 1988) 

An experiment has been conducted to study the occurrence, configuration and 
dynamics of large-scale coherent vortical motions in the fully developed region of a 
turbulent axisymmetric jet. The key idea is to use vorticity signals from a spatial 
grid to detect and sample large-scale vortical structures and then use the (smoothed) 
vorticity peaks of spatial vorticity patterns to align and ensemble average successive 
realizations to determine structure configuration and dynamics. Measurements were 
made in an air jet a t  Re, = 69000 by employing a radial rake of seven x -wires to 
obtain the azimuthal vorticity map. Two additional conditioning probes were placed 
+90° away from the rake to determine the three-dimensional phase and hence the 
structure configuration. Structures with axisymmetric, helical and double helical 
configurations have been educed. Among them, the helical structures are far more 
dominant than the others, and the jet dynamics are thus discussed in terms of these 
helical structures. Helical structures move radially outward as they advect 
downstream. This radial movement, in conjunction with simultaneous local ejection 
of turbulent fluid and subsequent entrainment of the ejected fluid with ambient fluid, 
appears to  be a major means of jet spreading. The shear strain rate is strong on the 
downstream side of the structure, causing intense small-scale turbulence production 
and mixing there. 

1. Introduction 
While considerable progress has been made toward understanding coherent 

motions in the transitional region of the turbulent axisymmetric jet, little is known 
about their nature, even occurrence, in the fully developed region. The explanation 
for this can be traced to the fact that previous measurement techniques, though 
successful in revealing and quantifying the coherent motions in the transitional 
region, were inappropriate in the fully developed region. The extensively applied 
controlled excitation methods (Crow & Champagne 1971 ; Kibens 1980; Zaman & 
Hussain 1980; Strange & Crighton 1983) were unable to control the organized 
motions beyond the jet potential core, and smoke and dye visualizations in the fully 
turbulent region reveal no identifiable organized structures. A new method was 
clearly needed. 

The existence of coherent motions in the fully developed turbulent axisymmetric 
jet has been suspected by researchers probably ever since coherent motion became 
the major focus of experimental turbulence research. Conventional time-mean 
measurements like the wavenumber-celerity spectrum (Hussain & Clark 1981 a) and 
the two-point space-time correlations of longitudinal velocity fluctuations (Tso, 
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Kovasznay & Hussain 1981) suggested the occurrence of these motions. Fourier 
analysis of the conventional azimuthal correlations of both velocity and tcrnperature 
signals (Tso 1983; Sreenivasan 1984) indicated the azimuthal cohercnce of flow 
events. These result,s however are not conclusive because of the limitations in 
applying the conventional time-mean methods to study time-dependent coherent 
motions (Hussain 1980; Lumley 1981 ; Cantwell 1981 ; Coles 1981). 

The limitations of such conventional measurements in the jet far field can be 
partially overcome by emerging sophisticated measurement techniques such as 
particle displacement velocimetry and image processing. Another possibility is 
smoke or dye visualizations. In one particular example, flow pictures using the laser 
fluorescence dye technique (Dimotakis, Miake-lye & Papantoniou 1983) showed 
zigzag flow patterns in one diametral plane a t  Re, = 2500 (Re, is the Reynolds 
number U,D/v ,  where U,  is the jet exit velocity, D the nozzle diameter, and v the 
kinematic viscosity), but symmetric flow patterns a t  Re, = 650. Bascd on these 
patterns, the existence of coherent motion in the far field, either of an axisymmetric 
or a helical configuration, was suggested. However, some further questions remain. 
First, in the flow pictures obtained, large-scale vortical structures are not clear. 
Second, the three-dimensional helical structure configuration cannot be evident or 
unique from the view in a two-dimensional plane. And third, the Reynolds numbers 
are low ; both axisymmetric and sinuous disturbances are known to occur in a range 
of Reynolds numbers up to 300 (Reynolds 1962). Also, while flow visualization has 
helped the understanding of the flow physics, it is useful only for short times or 
distances following injection of dye or smoke. In  any case, these flow visualization 
techniques can only provide qualitative perceptions of organized motions. Therefore, 
in order to ascertain whether coherent motions occur in the fully developed region, 
and to determine their configurations and dynamical significance, especially in a 
high-Reynolds-number jet (say for Re, > lo4), further investigations involving 
quantitative information were needed. 

The present investigation has thus focused on developing a method that can verify 
the occurrence of large-scale vortical structures and a t  the same time determine their 
configurations and dynamical roles. This was accomplished by the use of a radial, 
linear rake of x -wires to measure the azimuthal vorticity in the diametral plane (i.e. 
(2, r)-plane) passing through the x -wire rake. To determine the three-dimensional 
configurations of the structures, two single-wire probes were placed a t  the half-radius 
positions at  azimuthal angles f90" away from the rake. 

Unlike the nominally two-dimensional structures in plane or axisymmetric mixing 
layers, most organized structures in the fully developed turbulent axisymmetric jet 
are three-dimensional. Exploratory tests suggested that, in the far field of an 
axisymmetric jet, the structures are typically helical ~ apparently not inconsistent 
with the stability analysis of Batchelor & Gill (1962). It was clear that the new 
detection scheme must be capable of addressing the helical configurations of 
structures and thus had to be more sophisticated than those used for two-dimensional 
structures. We shall address the helical configurations and their detection methods 
in $3, before discussing results in $4. 

2. Experimental procedures 
2.1. Apparatus and instrumentation 

The experiment was conducted a t  50 and 100 diameters downstream of a 2.54 cm 
circular jet, housed in a 16 x 32 x 4 m laboratory with controlled temperature and 
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FIGURE 1. Experimental set-up for the conditional sampling scheme. 

traffic. The jet, having an initially laminar boundary layer, was studied at  an epit 
velocity of 42 m s-', corresponding to Re, = 69000. The r.m.s. intensity of 
longitudinal velocity fluctuations a t  the jet exit was about 0.1 YO of the exit velocity. 
The exit flow had no dominant spectral component. 

The velocity signals in this experiment were measured with a custom-made 16- 
channel anemometer (adapted version of USC-78). Single-wire probes were welded on 
TSI-1210 sensors with TSI 1150-18 probe supports, and x -wire probes were welded 
on TSI-1241 sensors with TSI-1155 probe supports. All these probes used 4 pm 
tungsten wires operated at an overheat ratio of 0.4. 

Signals from the anemometer were sampled using a 12-bit A/D converter 
(HP9100A) under the control of a laboratory minicomputer (HP2lOOS). They were 
used for on-line analysis or stored onto digital magnetic tapes for post-processing. 
The A/D converter's sampling rate was 20 kHz, and all of its 16 channels were used. 
The resulting sampling rate of 1.25 kHz per channel is adequate for the large-scalc 
vortical motions studied. 

2.2 .  Detection scheme 
Vortical motions in the jet far field were studied in this experiment by a novel 
detection scheme. The experimental set-up is shown in figure 1, along with the 
cylindrical coordinates r ,  0 and x. It consists of one rake of seven equally spaced x - 
wires aligned radially from the jet centreline to r = 1.56 ( b  is the local half-radius 
defined on the basis of the longitudinal mean velocity profile), and two single wires 
placed a t  the half-radius positions +90° away from the rake. The spacing between 
adjacent x -wires in the rake is 0.25b; this choice was dictated by the number of x - 
wires and a preliminary estimate of the typical size of large-scale vortical motions a t  
the measurement station. The longitudinal velocities a t  the half-radius positions of 
Oo, 90" and 270°, denoted by ul ,  u2 and u3 respectively, were used to infer the 
structure configuration. 
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For any two adjacent x -wires in the rake, the azimuthal vorticity a t  the point 
halfway between them was calculated by 

where U ,  is the mean velocity at the jet centreline, and u and v are the longitudinal 
and radial velocities respectively. Taylor’s hypothesis with an advection velocity 
0.511, has been used to transform x into t .  

Preceding this experiment, the applicability of the Taylor hypothesis to large-scale 
coherent structures in turbulent shear flows had been evaluated in our laboratory by 
Zaman & Hussain (1981). Knowing that use of the Taylor hypothesis for studying 
typical large-scale structures in turbulent shear flows may be grossly in error (Lin 
1953), that study was intended to evaluate this error. This was done by comparing 
the measured actual spatial distributions of the structure properties with those 
deduced through the use of the hypothesis in the jet transitional region, where the 
large-scale coherent structures can be stabilized in space and time using controlled 
excitation. It was observed that the hypothesis works well for an isolated coherent 
structure if a single advection velocity (i.e. the structure advection velocity) is used 
across the shear flow. The spatial distributions of the structure properties deduced 
through the hypothesis were found to be largely the same as the measured actual 
spatial distributions ; the location of the structure ‘ centre ’ and the radial extent of 
the structure were almost identical in both cases, although the vorticity peak 
magnitudes differed by as much as 15%. A detection scheme using the Taylor 
hypothesis with a single advection velocity therefore can indicate the passage of 
large-scale structures, for instance, in the jet far field where the structures are mostly 
isolated (see 53.1).  The study also indicated that the average velocity across the shear 
region is the optimal choice of the advection velocity. For the mean shear region 
covered in the present experiment, this average velocity is nearly O.5Um, as already 
used in (1 ) .  Use of the local time-average, phase-average or instantaneous 
longitudinal velocity as the advection velocity in Taylor’s hypothesis, on the other 
hand, produces unacceptably large distortions. For interacting structures, results 
also showed that the use of a single advection velocity is the least objectionable. 

As to the approximation of aular, the grid size is the radial spacing 0.25b between 
adjacent x -wires in the rake. For the vortical motions involved in this investigation 
-the motions whose radial extents are greater than b -this spatial resolution allows 
a t  least five vorticity data points in the core region of a sampled structure. This 
resolution, though not high, is comparable with those employed in other coherent 
motion studies; see, for example, Browand & Weidman (1976), and Zamarl & 
Hussain (1981). Note that, in some flow situations, the structures are stable in the 
sense that they occur at the same location at periodic intervals, either because of the 
low Reynolds number or the use of controlled excitation. Then, a single x-wire 
traversing across the shear layer is sufficient to educe structure details by phase- 
locked measurements, and the spatial resolution can be as fine as the traverse 
mechanism allows. The random occurrence of the jet far-field structures forced the 
use of a rake of x-wires. Since our rake had only seven x-wires and hence six 
vorticity data points, the 0.25b spacing was the optimum choice for the eduction of 
large-scale motions. 

Once the vorticities were calculated, the detection scheme involved four basic 
steps (illustrated in figure 2) to select a qualified sample. First, the scheme detected 
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FIGURE 2. Detection steps of the conditional sampling scheme: (1) detect vorticity peak at rp;  (2) 
examine correlation of vorticities at rp - ib  and r p + @ ;  and (3) examine correlations among 
velocities ul, u1 and u,. The shaded region represents a large-scale vorticity concentration and the 
black dots its associated vorticity data points. 

a strong peak in the (smoothed) vorticity time trace a t  the radial position gb, 
hereafter denoted by r,,, near the centre of the x -wire rake. Second, it examined a t  
the time instant of this peak a short-time correlation (see $2.3) of vorticities obtained 
at radial positions +0.5b away from rp and accepted the sample when the correlation 
value was greater than a specified threshold value. This step in effect ensured that 
only large-scale motions of radial extent greater than b were sampled. Third, it 
examined the azimuthal phase relation of each sampled large-scale vortical motion, 
using the short-time correlations of velocities ul, u2 and u3, to determine the 
structure azimuthal configuration. When the sample showed a characteristic phase 
signature (see 5 2.4), it was recorded (step four) for further analysis. 

Samples of one particular phase signature (i.e. structures of a particular shape) 
were aligned with respect to the vorticity peak - the phase reference - and ensemble 
averaged. A flow quantity &(r,  t )  of these samples could thus be decomposed into two 
parts: the ensemble average (&(r ,  t ) )  and the residual part &,.(r, t )  ; i.e. 

&P, t )  = (W, t ) )  + & A T >  t ) .  

By definition, ( & ( r , t ) )  represents the coherent part of the motion and &,(r,t) the 
incoherent part. 

2.3. Short-time averages 
I n  the four detection steps described above, all the correlations are short-time 
averaged. This short-time averaging process defines an integral value Q ( t ; T )  of a 
temporal quantity & ( t )  as 

$(t  ; T )  = &(t ' )  dt', 
T t-!F/2 

where !i' is the variable averaging time interval. This averaging interval was chosen 
to be comparable with the timescale of large-scale motions such that Q is dominated 
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FIQURE 3. Circular helices of normal modes: (a) mode 0; ( b )  mode 1 ; and ( c )  mode 2. The solid line 
represents the path of the helix and the dots its intersection with the azimuthal locations O", 90", 
180" and 270'. 

by the low-frequency events (corresponding to  large scales). Consequently, this 
averaging technique helps reveal the organized nature of large-scale motions, as it 
has done in some earlier works (Gupta, Laufer & Kaplan 1971; Blackwelder & 
Kaplan 1976). By subtracting the short-time average &(t;  T )  from &(t) ,  a fluctuating 
variable q ( t ;  T )  is defined, and its (local) r.m.s. value is denoted by q' ( t ;  T ) ,  

Following these definitions, a short-time correlation coefficient of two temporal 
quantities q l ( t )  and q2(t)  a t  a time delay 7 is defined as 

f F / 2  

R ( t ; 7 ,  T )  = -= [ ql(t ';  ~ ) q , ( t ' + T ; T ) d t ' / p ~ ( t ;  T)q; ( t+7;T) .  (3) T t-F/2 

This correlation is a stochastic quantity with values ranging from - 1 to 1. An event 
can therefore be defined by such correlations, and their joint probabilities have been 
used in this experiment to educe the azimuthal signatures of vortical motions (see 
$3.2). 

2.4. Circular helix 
The azimuthal signatures of vortical motions recognized in this experiment match 
closely the circular helices of normal modes in the jet far field (Batchelor & Gill 1962). 
For a normal mode disturbance A(r)ei(n"+"("-et)) (a and n denote the axial and 
azimuthal wavenumbers and c the phase speed ; a = 2x/h, h being the wavelength), 
a helix is a path in space defined by the equations: 

ax+nO = const., r = const. (4% b)  

It is a path along which the disturbance has the same phase a t  any time instant. 
For the normal modes 0, 1 and 2 which are most relevant to this study, their 

circular helices a t  r = b are illustrated in figure 3. The arrowed solid lines in this figure 
denote the helices, and the dots are their intersections with azimuthal planes in 
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increments of 90". Consider mode + 1 as one example. Since n = 1 in this case, (4a )  
becomes 

where the constant has been set equal to  zero by shifting the origin of B (or x ) .  Thus, 
as seen in figure 3(b) ,  the helix, of mode + 1 passes 8 = 0" when x = 0 and 0 = 270" 
when x = $I, and so forth. Since the streamwise coordinate x was converted into time 
t by using Taylor's hypothesis, the helix has also been plotted against t with a period 
T replacing the wavelength A. The cases are similar for the other modes. 

This conversion from x into t allows the phase characteristics of normal modes to 
be described by short-time correlations. In this experiment, they are the correlations 
among longitudinal velocities u,, u2 and us obtained a t  the half-radius positions of Oo, 
90" and 27O0(see figure 1) .  Denote the correlation between u( and u, by Rij ( i , j  = 1 ,  
2 ,3) .  The out-of-phase relation of mode + 1 a t  zero time delay, for instance, can 
thus be denoted by R32(7 = 0) = - 1 ,  and its in-phase relation along the helix by 
Rs1(7 = qT) = 1 and R3,(7 = $T) = 1 ,  etc. (see figure 3b). Similar descriptions 
apply to the other modes. 

The exact phase relations characterized by the circular helices, however, can 
seldom hold in a turbulent jet because structures suffer from jitter in the random 
environment and have distortions. An ideal correlation peak of value 1 a t  one in- 
phase time delay can thus be approximated at  most by a correlation peak greater 
than a threshold value within a time window centred around that time delay. 
Similarly, an out-of-phase relation can only be indicated by a negative correlation 
peak less than a negative threshold value. Throughout this experiment, this 
threshold magnitude, denoted by H ,  was chosen to be one standard deviation of 
R3&r = 0) above its time mean, and the window size was chosen to be one-eighth 
of the period between detected structures. 

3. Results and discussion 
3.1, Large-scale vortical structures 

The large-scale vortical motions in the jet far field were evident from vorticity 
contours in the diametral plane passing through the x -wire rake. Figure 4 shows one 
such realization obtained at x / D  = 50, where the jet centreline velocity Urn is 5.1 
m s-l and the local half-radius b is 0.1 1 m. The time axis is plotted from right to left 
to indicate the occurrence of vortical motions in the physical plane (i.e. x increases 
to the right). Two contour levels (non-dimensionalized by laa/arlrnax) of magnitudes 
of 1.4 and 2.2 have been drawn in this figure; the solid lines are for the positive 
contours, and the dashed lines for the negative ones. Note that the structures appear 
compressed in the streamwise direction in figure 4 as long time traces are used to 
include more structures per figure. 

The vorticity concentrations represented by the contours vary in size, shape, 
orientation, radial location and strength. Among them, the positive concentrations 
occur almost everywhere across the mean shear region (radial range covered in the 
figure). The negative ones, however, occur mostly near the jet centreline. They are 
presumably the vorticity concentrations which migrate from across the jet centreline, 
just as some positive ones do the other way too. These vorticity concentrations are 
mostly isolated, though once in a while they are clustered (as pointed by arrows in 
figure 4 ) ,  probably indicating coalescence. They occur less frequently near the outer 
edge of the jet and seem more dilated in that region. Consequently, the positive 
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FIGURE 4. Realizations of azimuthal vorticity contours in the ( 7 ,  t)-plane. Contour levels in 
sequence are - 2 . 2 ,  - 1.4, 1.4 and 2.2 .  Arrows indicate the clusters of vorticity concentrations. 

(solid-lined) vorticity concentrations, or say structures, around the peak mean shear 
region have been the main focus of further investigation to understand their 
configurations and transport mechanisms. 

In our eduction, a vorticity concentration in the diametral plane was first recorded 
when the (smoothed) vorticity time trace at rp had a peak value exceeding its time 
mean by one standard deviation. The second requirement was that,  a t  the instant of 
occurrence of this vorticity peak, the short-time correlation of vorticities a t  radial 
distances $b inside and outside rp was greater than its time mean by one standard 
deviation. These two steps together selected a strong vortieal structure whose 
vorticity peak happened to pass by rp  and whose radial extent was greater than b. 
Actually, for nearly 95 YO of the samples examined, the vorticity obtained at  rp was 
greater than vorticities at all other five grid points. Once such a large-scale structure 
was selected, its configuration (i.e. spatial shape) was subsequently examined by the 
correlations of longitudinal velocities ul ,  u2 and us. These data are explained in the 
next section. 
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In  computations of these correlations of velocities and vorticities, an averaging 
time interval of b/U,  was used. It is nearly the time span of a preliminary ensemble- 
averaged vorticity contour such as those seen in figure 6. Also, the time instants at 
which the correlations were calculated were those a t  the vorticity peaks. Therefore, 
the formal correlation notation R ( t , 7 ; T )  (see $2.3) is simplified by R(7) in later 
discussions. 

3.2. Structure configurations 
Using the velocity correlations, three types of configurations - namely axisymmetric, 
helical, and double helical -have been recognized in this investigation. Among them, 
the helical structures were found to be the most dominant. They will be discussed 
first. 

3.2.1. Helical structures 
The signatures of helical structures were tested by examining the phase relation 

between the longitudinal velocities u2 and ug on opposite sides of the jet. Using 
velocity correlations, we calculated the joint probability of the events when both 
R3,(7) and R32( - 7 )  for 7 > 0 were greater than a threshold H with a simultaneous 
condition that R32(r = 0) was less than - H .  The result is plotted in figure 5 against 
the non-dimensional time delay 7', defined as the ratio of the time delay 7 over the 
local timescale 2b/Um. The joint probability value is zero at zero time delay because 
of the out-of-phase condition. It increases with the time delay and reaches a peak a t  
7' x 1.2. This means that when u2 and u3 are out of phase a t  zero time delay, they 
are most likely to be simultaneously in phase a t  7' x & 1.2. 

A similar calculation was performed to determine the in-phase time delay for 
velocities u1 and u3 (of 90" separation). This time, the probability distribution of the 
event when R,, was greater than H was calculated again under the out-of-phase 
condition a t  zero time delay. The result, also plotted in figure 5 ,  indicates an in-phase 
time delay a t  7' x 0.6, which is one-half the in-phase time delay for u2 and ug. This 
result indicates that when vortical structures pass the detection position, some of 
them have the azimuthal phase relations characterized by the circular helix of mode 
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FIGURE 6. Ensemble averages of f2 (non-dimensionalized by latz/arlmax) and associated R,*(T) 
and R13(7) : (a)  mode + 1 ; ( b )  mode - 1. 

+ 1. That is, when the longitudinal velocities on opposite sides of the jet axis are out- 
of-phase at zero time delay, their in-phase time delays in both directions of the time 
axis are twice that for 90' separation. This indicates the occurrence of helical 
structures in the jet far field. The case is the same for the mode - 1  signatures. 

For a helical structure, ideally, the correlation between u1 and u3 (of 90" 
separation) at zero time delay should always be zero. Were this the case for all the 
samples counted in figure 5 ,  none of their velocity correlations would be greater than 
H and the associated probability value must be equal to zero at 7' = 0. This is not 
the case in figure 5 .  This result indicates that  if only the out-of-phase condition a t  
zero time delay is used as the eduction criterion, one will sample structures that are 
either distorted or different from the helical structure. In order t o  capture the helical 
structures, therefore, all the in-phase signatures considered in figure 5 (at both 90" 
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FIGURE 7. Models of helical structures : (a )  mode + 1 ; ( b )  mode - 1. 

and 180" azimuthal separations) have been included in the detection, as they should 
be. 

I n  the sampling process, a large-scale vortical motion is first selected from those 
samples that have already satisfied the eduction condition a t  zero time delay. The 
velocity signal u1 is then required to be in phase with u, a t  r/T = and with u3 at  
both r/T = $ and r /T  = - a  (see figure 3 b ) .  T is twice the time delay a t  which u2 and 
us are in phase; it corresponds to the period of the helix shown in figure 3 ( b ) .  Note 
that the requirement of satisfying the two in-phase conditions a t  both time delays $T 
and -iT a t  the same azimuthal position (270") is to ensure that the structure is a 
helical one (as opposed to other possibilities such as an inclined ring-like structure). 
In  this sampling process, the in-phase condition, as specified in $ 2 . 4 ,  is satisfied only 
when there is a large correlation peak occurring within a time window centred around 
each detection time delay. 

With the vorticity peak as the phase reference, an ensemble average of vorticity 
was thus obtained from the selected samples along with the two time traces of 
velocity correlations R,, and R13. The results are displayed in figure 6 ( a ) ,  where the 
vortical structure is indicated by the educed vorticity contours and the time axis 
increases from right to left to indicate the structure occurrence in the physical plane 
(5 increases from left to right). I n  this figure, positive peaks in R,, and& correspond 
to the in-phase time delay while negative peaks correspond to the out-of-phase 
relation. They together characterize the mode + 1 helical signature of the vortical 
structures. These structures are modelled by a helical vortex sketched in figure 7 (a). 
Similar results for helical structures of mode - 1 signature are shown in figures 6 ( b )  
and 7 ( b ) .  

3.2.2.  Double-helical structures 
A procedure similar to the preceding one was used to test signatures of double- 

helical structures. This was done by calculating the joint probability of the events 
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FIGURE 9. Ensemble averages of Q (non-dimensionalized by li3f@w[,,,ax) and Rr2(7) and RI3(7)  of 
mode 2. 

when both R3,(7) and R32( - 7 )  for 7 > 0 were greater than H ,  with the additional 
restrictions of the in-phase condition (i.e. R,,(7 = 0) greater than H )  and the out-of- 
phase condition (i.e. RQ1(7 = 0) less than - H ) .  The result is shown in figure 8. In this 
figure, the joint probability distribution shows a peak at zero time delay because of 
the in-phase condition. It shows a second peak a t  7' x 1.9. On the other hand, the 
probability for R3,(7) to exceed H (obtained under the same condition) is zero at  zero 
time delay owing to the out-of-phase condition. I ts  value increases with the time 
delay and reaches a peak at 7' x 1.0 - a value nearly one-half of 1.9. That is, under 
the eduction conditions, u1 and u3 (of 90" separation) are likely to be in phase a t  a 
time delay which is one-half that  for u2 and u3 (of 180' separation) to be 
simultaneously in phase in both directions of the time-delay axis. These are the phase 



Organized motions in a ful ly  developed turbulent axisymmetric jet 437 

90" 

u 
0 2 

x l h  

FIGURE 10. Models of double-helical structures of mode 2 :  (a) mode t-2; (b)  mode - 2 .  

characteristics of circular helices of mode 2 shown in figure 3(c ) .  They imply the 
occurrence of double-helical structures in the jet far field. 

Vortical structures of mode 2 signatures were selected. For each structure to 
satisfy the eduction conditions, its velocity u1 was required to be in phase with u, a t  
r /T  = + and us at T / T  = -6, or with up at T / T  = -+and u3 a t  r/T = 2 (see figure 3c). 
T is the time delay at which R3, in figure 8 reaches the second peak, corresponding 
to the period of double helical structures. With these conditions, no distinction was 
made between mode 2 and mode -2 signatures. From the selected samples, the 
ensemble averages of vorticity and the time traces of R,, and R,, were obtained 
(figure 9). Here, the double-helical signature of the vortical structure is characterized 
by the two pairs of correlation peaks (indicating in-phase positions) diagonally across 
the vorticity map. The models of such double helical structures are sketched in 
figure 10. 

3.2.3. Ring-like structures 
Structures of mode 0 signatures have also been sought with a similar detection 

procedure. These signatures were tested by calculating the probability distributions 
of the two events when both R,, and R,, were greater than H ,  with the additional 
conditions that both R,,(T = 0) and R3,(r = 0) be greater than H .  As shown in figure 
i l ,  these two distributions have peaks a t  7' = 0 as a result of the two eduction 
conditions. They both have a second peak a t  7' w 2.0. These peaks satisfy the phase 
characteristics of mode 0 in figure 3(a ) .  However, when both R,, and R,, were 
required to be greater than H a t  7' = 2.0, the number of samples became negligible. 
Even when they were required to be in phase only a t  zero time delay, the ensemble 
size was less than one-third of that of mode 1. Consequently, we conclude that 
axisymmetric vortical structures are not dynamically important in the jet far field, 
although they are likely to occur sometimes. 
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Azimuthal wave- Time delay T/T Time delay T/T 
number w at 90" at 270" 

0 0 0 
1 - -I 3 1 4 4 ,  4 

1 
T 

1 
2 2 
1 1 
2 2 

- I  3 - 1  41 4 

2 ,  - 2  -_  

TABLE 1.  Detection time delays for modes 0, 1 and 2 

- 
- _ _  - 

3.3. Dominance of helical structures 
Structures of axisymmetric, helical and double-helical configurations are now 
recognized. The next task is to determine their importance in jet dynamics, 
especially in turbulent transport processes. This, however, cannot be done without 
first knowing the frequency of occurrence of each structure. As discussed earlier and 
also summarized in table 1, different structures are sampled with different sets of 
conditions (or restrictions) and, among them, the helical structures have been 
subjected to the largest number of conditions (three, see $3.2.1) and the longest time 
delay (i.e. 0.757'). The use of different conditions for different structures affects the 
measured frequencies of occurrence. 

To illustrate this point, consider the sampling of a mode + 1  structure. As 
described in 33.2.1, a mode + 1 sample is selected when R,, a t  r/T = and R,, at r/T 
= 4 and - a  all have peaks greater than the threshold value H within the associated 
time windows. The window size accounts for phase jitter only in time; no such 
allowance for radial jitter is included in the detection scheme. For a helical structure 
passing the detection point, the radial jitter, however, could move its vorticity peak 
at the 90" position outside the half-radius position while the vorticity peak at  0" 
(detected a t  r p )  is still inside the half-radius. Consequently, this helical structure 
produces a negative R,, value and is discarded by the detection scheme. Similar 
arguments relate to  R13. A radial jitter that moves the vorticity peak from rp (=  i b )  
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FIGURE 12. Contours of (uv)/c",:  (a) mode +l; ( b )  mode -1. 

to r > b does not need to be large; it could easily be caused by local incoherent 
turbulence. The chances for a vorticity peak to occur inside r = b and outside r = b 
at each of the three detection locations therefore are nearly equal, and the 
probability of having a positive peak of R,, or R,, at each detection location is just  
about one half. (In reality, the vorticity peaks a t  90' and 270" were not detected 
owing to limitations of the number of sensors available; see $2. The probability 
estimate however should remain unchanged.) As a result, only one-eighth of the 
desired helical structures should have been sampled. 

The samples of helical structures account for about 1.5 YO of the total sampling 
time. Following the above argument, one would expect them to occur for 12% of the 
time. Similarly, mode 2 samples should occur up to 3%, fourfold their actual 
sampling amount. Thus, the helical structures are far more dominant than all other 
structures so far recognized in the jet far field. The present conditional sampling 
scheme detects only those strong and orderly structures whose vorticity peaks 
happen to pass the detection position rp. Therefore, structures a t  other stages of 
generation and decay, which would be weaker in strength, were not sampled, and 
structures not centred near rp were also excluded. Consequently, we believe that the 
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FIGURE 13. Contours of ( . ) /Urn: (a) mode +l; ( b )  mode - 1 .  

above estimate of the frequency of occurrence of helical structures is conservative. 
Although large-scale structures other than those discussed so far may indeed be of 
dynamical significance in the jet far field, none were identified. The following 
discussion on jet dynamics therefore will be confined to the helical structures. 

3.4. Turbulent transport by helical structures 
3.4.1. Large-scale momentum transport 

Let us first consider the momentum flux term - the flux of streamwise momentum 
in the radial direction. This is the most important momentum flux term and is 
responsible for the spreading of the turbulent axisymmetric jet. The ensemble 
averages of this quantity, non-dimensionalized by the square of the jet centreline 
velocity U,, are shown in figure 12 for both modes + 1 and - 1. These two averages 
are fairly close to each other, as expected in the axisymmetric jet. Both figures show 
a large momentum flux region on the downstream side of the structure; the radial 
extent of this region is almost the same as that of the structure itself. By contrast, 
the flux on the upstream side seems less significant. 

This result is consistent with the radial velocity distribution (v) within the 
structure. The distribution, which is shown in figure 13 for both modes + 1 and - I, 
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FIQURE 14. Intersection of a single helical structure with one ( T ,  2)-plane. 

also possesses a region of strong radial motion on the downstream side. The positive 
(v) region is of roughly the same shape and size as that appearing in (uv). As 
illustrated in figure 14, a helical structure intersects the jet diametral plane a t  an 
angle of roughly 60" (determined by tanP1(2b/0.5h) ; h = 0.5Um T ) ,  and the radial 
velocity v over the diametral plane should be nearly equal to the radial velocity v" 
over the cross-section of the helical structure. The asymmetry seen in (v) therefore 
should also be seen in (v"). Physically, this suggests that the vortical structure 
advects radially outward as a whole. The asymmetry in (v) is thus the result of the 
superposition of the induced radial velocity of the structure and the outward 
advection. The case for (uv) is similar, where the asymmetry in figure 12 should be 
largely due to the outward momentum transfer associated with this radial advection. 
Assuming equal induced-velocity peaks on both upstream and downstream sides of 
the structure in figure 13, the radial advection speed should be around O.035Um. This 
speed, as noticed, is higher than the radial velocity of about 0.02Um of turbulent 
bulges reported before by Chevray & Tutu (1978). 

As a helical structure moves outward, the ambient fluid a t  a farther distance from 
the structure will attain higher induced speed. This has the effect of increasing the 
engulfment rate and ultimately the jet spreading rate. The jet spreading rate, defined 
by Sb/Sx, is near 0.1 in the jet far field. During the time when a structure advects over 
8x with a speed, say 0.5Um, the half-radius b will grow by 0.05Um8t, where 6t is the 
advection time. Meanwhile, the radial advancement of the structure is about 
0.035Um 6t, which is 70 YO of the half-radius growth. This comparison, though simple, 
suggests that the radial advection of helical structures can be very important in jet 
spreading. 

Parenthetically, we would like to add that the radial movement alone does not 
achieve all the above effects. For ambient fluid already near the border of a structure, 
the local ejection of turbulent fluid may also play an important role. This ejection is 
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FIGURE 15. Contours of -(u,z~,)/Uz,: (a) mode + l ;  (b) mode - 1 .  

mostly local and of mushroom-type, as some flow visualization studies have shown 
(Hussain & Clark 1981 b ;  C. Sinclair & W. Schwarz, private communication 1983). It 
is perhaps the result of a cut-and-connect process when a part of a vortex folds on 
itself and pinches off as a vortex ring (Oshima & Asaka 1977). The ejected turbulent 
fluid, after being shot out and broken down, will mix with ambient fluid in its 
neighbourhood. This mixture of vortical and non-vortical fluid is later engulfed by 
the structure as the result of the induced motion of the structure. 

3.4.2. Small-scale mixing 
Small-scale mixing follows large-scale engulfment. In terms of momentum, this 

process is characterized by the incoherent Reynolds stress term - (ur v,), plotted in 
figure 15 for both modes + 1 and - 1. In  both, a peak is seen on the downstream side, 
near the vorticity peak. This suggests that there is active mixing in that region. 

In  about the same region where peak - (u, v,) is observed, the shear strain rate 
(s) = ;(a(v)/ax+a(u)/ar), which is plotted in figure 16, also shows its highest 
magnitude. The peak value is about 20% higher than that on the upstream side. 
Also, the region of large shear strain rate is almost four times that on the upstream 
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side. Large shear strain rate means strong structure distortion ; as the negative value 
of the shear strain rate suggests, the distortion is in a direction inclined to the jet 
upstream. This causes more transfer of energy from the structure to the small-scale 
motions on the downstream side, as evident in the distribution of the turbulence 
production term - (u,v,)(s) shown in figure 17. These small-scale motions, in turn, 
should be responsible for the local active mixing. 

The above results suggest that the mixing process inside the structure is not 
uniform - i t  is strongest on the downstream side. Therefore, one may speculate t8hat 
the fluid on the upstream side of the structure, containing newly engulfed ambient 
potential fluid, will circulate around the structure to the downstream side and 
experience its most active momentum exchange between vort,ical and non-vortical 
motions (owing to the peak of - (u,v,) there). This mixed fluid later circulates to the 
upstream side, collects new ambient fluid, and moves again to the downstream side 
for another turn of active mixing, and so on. This proposed mixing mechanism, 
although plausible, remains somewhat conjectural, as the spatial resolution of the 
x -wire rake is not sufficient for detailed investigation of small-scale motions. 

In figure 15, there is another high-Reynolds-stress region on the far left side. The 

15 FLM 203 



444 J .  Tso and F .  Hussain 

1.5 

r 
6 
- 

0 

1.5 

r 
b 
- 

0 

r i  I I  I I  I I I I 

1 I I  I I I I I I  

1 0 - 1  

7' 

I '  I I  I 1  I I  i l l  

0.012 
t I I \I\\ \ \ -I 

1 0 - 1  

7' 
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above discussions, however, do not refer to this. At a distance this far away from the 
vorticity peak, which is the detection reference, the measured Reynolds stress can be 
affected significantly by the jitters of large-scale motions with respect to the 
detection reference and dissimilarities among individual large-scale structures. This 
does not suggest that  there is no active mixing there. In  fact, a similar result in the 
plane mixing layer was proved to be related to the separatrix region where secondary 
streamwise vortices (or ribs) were observed (Konrad 1976; Bernal & Roshko 1986). 
Hopefully, further work aligning successive realizations in the substructure region in 
between primary structures will shed light on this issue. 

3.5. Self-similarity of helical structures 
The preceding discussions have shown the dominance and dynamical behaviour of 
the helical structures a t  x / D  = 50. Whether these findings hold throughout the fully 
developed region is a basic issue and depends solely upon the similarity of the 
ensemble-averaged measures of the helical structures. 

This issue was examined by comparing the timescale T and the contours of (a),  
(uv) and - ( u r v r )  of the helical structures a t  x /D  = 100 to those measured at  



Organized motions in a fully developed turbulent axisymmetric jet 445 

0' ' I I 1 1  I I  I I 

1 0 - 1  
7' 

1.5 

0 
1 0 

7' 

- 1  

11.5 1 , I I I  I 1  I 1  i 

r 
b 

1 -  

I0 

. . .  
- 0.009 

1 0 - 1  
7' 

FIGURE 18. Contours of mode +1  structure at x /D  = 100: (a) (Q)/las/arl,,,; ( b )  (uv)/U,; 
(4 - (u ,v ,> /~m.  

15-2 



446 J .  Tso and F .  Hussain 

x / D  = 50. The timescale T at x / D  = 100, when non-dimensionalized by the local 
timescale 2b/Um, has a value of about 2.3, which is close to the value 2.4 obtained 
at x / D  = 50. Observe that T, as seen in figure 3 ( b ) ,  corresponds to the wavelength h 
of the helical mode, indicating that the structures at x / D  = 50 and 100 are similar 
in their configurations. As seen in figure 18(a+), the contours of (52) and ( u v )  at 
x / D  = 100 agree well with those at x / D  = 50; however, the agreement on - ( u T v r )  
is poorer (as in the conventional measurements done by Wygnanski & Piedler 1969) 
but mostly in regions far away from the vorticity peak. This means that the helical 
structures at x / D  = 50 and 100 are similar in their dynamical behaviour. 

In the above comparison, the scales used, which include the half-radius b ,  the 
centreline velocity Urn, and the maximum mean shear li3~/&(,,, are all defined on the 
basis of the local mean velocity profile. They are the same scales used in asserting the 
self-similarity in conventional measurements This is also the case in the fully 
developed plane mixing layer where earlier measurements (Browand & Troutt 1980 ; 
Hussain & Zaman 1982) have shown the invariance of the structure configuration, 
recurrence frequency, and dynamics. The self-similarity of the mean flow may simply 
be the consequence of the self-similarity of the dominant structures. 

4. Concluding remarks 
The most important conclusion reached in this study is that, among the large-scale 

vortical structures examined in the fully developed region of a turbulent 
axisymmetric jet, there is a preferred helical configuration. While structures of 
axisymmetric and double-helical configurations also occur in the same flow region, 
the helical structures are the most dominant. This makes it meaningful to study 
turbulent transport- in terms of the helical structures, and perhaps even to model the 
jet far field, at least to the first order, with the helical structures. 

Experimental evidence in this investigation showed that the helical structure has 
a strong radial outward movement. This radial movement increases the induced 
speed of ambient fluid. In  conjunction with the simultaneous local ejection of 
turbulent fluid and subsequent engulfment of ejected fluid with ambient fluid, it may 
be a major mechanism for momentum transfer and jet spreading. The evidence also 
suggests that  the small-scale mixing process within the structure is most active on 
its downstream side, where the structure experiences a strong distortion inclined to 
the jet upstream. 

That the helical structure was found to be the dominant structure provides one 
more piece of support for the linear stability analysis, which predicted the helical 
mode to be the most unstable mode for the jet far-field mean velocity profile 
(Batchelor & Gill 1962; Morris 1976). Beyond this, the linear analysis has certain 
limitations in describing the nonlinear structure dynamics and evolution of helical 
structures (Hus.sain 1980; Strange & Crighton 1983). Moreover, the use of the mean 
velocity profile as the basic flow imposes a major constraint in predicting the 
structure behaviour. In  this study, for instance, the phenomenon of switching among 
different modes of structures, which should be related to the instantaneous flow 
dynamics, is unlikely to be explained by the analysis of the time-mean profile. 
Nonetheless, knowing this limit, the linear analysis has proved to be a useful guide 
in coherent-motion studies. 

This study was based on the simple idea of using large-scale vorticity peaks as 
detection references to sample and analyse the large-scale vortical structures. The 
scheme, also applicable to other turbulent shear flows, can be improved in several 
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ways. One can refine its space and time resolutions. This would be essential to the 
investigation of the configuration and dynamics of the substructures associated with 
the three-dimensional helical structures. The substructures are expected to be more 
complex than the longitudinal vortices or ribs of the presumably two-dimensional 
rolls in the plane mixing layer. The scheme can also include alignment in the time 
axis or even in the radial directions when more vorticity sensors are available. This 
can produce dividends in understanding the flow physics, as proved for instance by 
Hayakawa (1985) in the plane wake flow. 

The authors are indebted for helpful discussions to Drs S. J. Kleis and 
P. Bandyopadhyay during the research work, and to Professors F. K. Browand, 
C. M. Ho, and Dr A. S. Hersh during the preparation of this paper. This work 
was supported by the National Science Foundation Grant NSF MEA 81-11676. 
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